edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel GCE in Statistics 2
(6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA042711
All the material in this publication is copyright
© Pearson Education Ltd 2015

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or $d \ldots$ The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A 1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks
affected are treated as $A \mathrm{ft}$, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		Marks
1. (a)	notes		
	$\mathrm{P}(N \geq 10)=1-\mathrm{P}(N \leq 9)$	M1: using or writing $1-\mathrm{P}(N \leq 9)$ or $1-\mathrm{P}(N<10)$	M1 A1
	$=0.4126$	A1: awrt 0.413	

(b)	Y represents number of owls per $200 \mathrm{~km}^{2} \Rightarrow$ $Y \sim \operatorname{Po}(1.8)$	B 1 : using or writing $\mathrm{Po}(1.8)$	B1
	$\mathrm{P}(Y=2)=\frac{e^{-1.8} 1.8^{2}}{2!}$	M1 : for a single term of the form $\frac{e^{-\lambda} \lambda^{2}}{2!}$ with any value for λ or $\mathrm{P}(X \leq 2)-P(X \leq 1)$	M1 A1
	$=0.2678$	A1: awrt 0.268	

(c)	Normal approximation	M1: Using or writing, normal approximation with mean $=450$	M1
	$\mu=50 \times 9=450 \quad \sigma^{2}=450$	M1: Using or writing the mean = variance. Does not need to be 450 . May be seen in the standardisation calculation.	M1
		$\text { M1: } \pm\left(\frac{(470 \text { or } 469.5 \text { or } 470.5)-\text { their mean }}{\text { their sd }}\right)$ May be implied by a correct answer or $z=$ awrt 0.92	M1
	$\mathrm{P}(X \geq 470) \approx 1-\mathrm{P}\left(Z<\frac{469.5-450}{\sqrt{450}}\right)$	M1: dep on previous method mark being awarded. Using a continuity correction 470 ± 0.5 May be implied by a correct answer or $z=$ awrt 0.92	
		A1: correct standardisation no need to subtract from 1. Award for $\frac{469.5-450}{\sqrt{450}}$ or awrt 0.92 or a correct answer	dM1 A1
	$=0.1788$	A1: awrt 0.179	A1

Question Number	Scheme		Marks
2(a)		notes	
	$X \sim \mathrm{~B}(30,0.25)$	B 1 : using $\mathrm{B}(30,0.25)$	B1
	$\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)=0.8943-0.0979$	M1: using $\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)$ or $\mathrm{P}(X \geq 5)-\mathrm{P}(X \geq 11)$ oe	M1 A1
	$=0.7964$	A1: awrt 0.796	M1 A1
	NB a correct answer gains full marks		

(b)	$\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p<0.25$	B1: Both hypotheses correct, labelled H_{0} or NH or H_{n} and H_{1} or AH or H_{a}, must use p or $p(x)$ or π	B1
	$\mathrm{B}(15,0.25)$	M1: for using $\mathrm{B}(15,0.25)$	
	$\mathrm{P}(X \leq 1)=0.0802$	A1: awrt 0.0802 or $\mathrm{CR} X \leq 1$ (allow $\mathrm{P}(X \geq 2)=0.9198)$	M1 A1
	NB: Allow M1 A1 for a correct CR with no	correct working	
	Reject H_{0} or Significant or 1 1ies in the critical region	M1: A correct statement - do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H_{1} given then M 0 . Ignore their comparison. For a probabillity <0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability >0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio company's claim is true. Or The new transmitter will reduce the proportion of houses unable to receive radio	A1: cso (all previous marks awarded) and a correct statement containing the word company if writing about the claim or radio if full context.	

Question Number	Scheme		Marks
		Notes	
3(a)	$\int_{0}^{2} k x^{2} \mathrm{~d} x+\int_{2}^{6} k\left(1-\frac{x}{6}\right) \mathrm{d} x=1$	M1: for adding the two integrals, and attempting to integrate, at least one integral $x^{n} \rightarrow x^{n+1}$, ignore limits and does not need to be put equal to 1 . Do not award if they add before integrating	M1 A1
	$k\left[\frac{x^{3}}{3}\right]_{0}^{2}+k\left[x-\frac{x^{2}}{12}\right]_{2}^{6}=1$	A1: correct integration, ignore limits and does not need to be put equal to 1	
	$k\left[\frac{8}{3}\right]+k\left[3-\frac{5}{3}\right]=1$	M1: dependent on first M being awarded, correct use of limits and putting equal to 1 . This may be seen as $\mathrm{F}(2)=\frac{8}{3} k$ and using $\mathrm{F}(6)=1$	dM1 A1cso
	$4 k=1$	A1: cso answer given so need $4 k=1$ leading to $k=\frac{1}{4}$	
	$k=\frac{1}{4} *$		
NB Validation - if they substitute in $k=1 / 4$ you may award the $1^{\text {st }}$ three marks as per scheme. For the Final A mark they must say " therefore $k=1 / 4$ "			
(b)	2	B1: cao	B1
(c)	$\int_{0}^{x} k t^{2} \mathrm{dt}=\frac{k x^{3}}{3}$	M 1 : attempting to find $\int_{0}^{x} k t^{2} \mathrm{~d} t$ $t^{2} \rightarrow t^{3}$, ignore limits, may leave in terms of k	M1
	$\begin{gathered} \int k\left(1-\frac{t}{6}\right) \mathrm{dt}=k\left[t-\frac{t^{2}}{12}\right]+C \\ =k t-k \frac{t^{2}}{12}+C \end{gathered}$ $F(6)=1$ $6 k-3 k+C=1 \quad \therefore C=\frac{1}{4}$	M1: attempting to find $\int k\left(1-\frac{t}{6}\right) \mathrm{d} t$ at least one integral $t^{n} \rightarrow t^{n+1}$ and either have $+C(C \neq 0)$ and use $\mathrm{F}(6)=1$ or have limits 2 and x and + "their $\int_{0}^{2} k t^{2} \mathrm{dt}$ " and attempt to integrate $t^{n} \rightarrow t^{n+1}$ NB: may use any letter, need not be t ,condone use of x	M1
	$\mathrm{F}(x)\left\{\begin{array}{cc}0 & x<0 \\ \frac{x^{3}}{12} & 0 \leq x \leq 2 \\ \frac{x}{4}-\frac{x^{2}}{48}+\frac{1}{4} & 2<x \leq 6 \\ 1 & x>6\end{array}\right.$	A1: second line correct A1: third line correct B1: first and fourth line correct they may use "otherwise" instead of $x<0$ or $x>6$ but not instead of both	A1 A1 B1
	NB: Condone use of < rather than \leq and vice versa		

Question Number	Scheme		Marks
(d)	$\frac{x}{4}-\frac{x^{2}}{48}+\frac{1}{4}=0.75$	M1: putting their line 2 or their line 3 $=0.75$	M1 A1
	$x^{2}-12 x+24=0$ oe	A1: The correct quadratic equation like terms must be collected together	
	$x=\frac{12 \pm \sqrt{144-4 \times 24}}{2}$	M1d: dep on previous M1 being awarded. A correct method for solving a 3 term quadratic equation $=$ 0 leading to $x=\ldots$ Use either the quadratic formula or completing the square - If they quote a correct formula and attempt to use it, award the method mark if there are small errors. Where the formula is not quoted, the method mark can be implied from correct working with values but is lost if there is a mistake. If they attempt to factorise award M1 if they have $\left(x^{2}+b x+c\right)=(x+p)(x+q)$ where $\|p q\|=\|c\|$ leading to $x=\ldots$ May be implied by a correct value for x	dM1 A1
	$=2.54$ or $6-2 \sqrt{3}$	A1: awrt 2.54 or $6-2 \sqrt{3}$ or $6-\sqrt{12}$. If 2 values for x are given they must eliminate the incorrect one.	

Question Number	Scheme		Marks
		Notes	
4(a)	0.8	B1: cao	B1
(b)	0.25	B1: cao	B1
(c)	$\frac{(0.5-0)^{2}}{12}=\frac{1}{48}$ or awrt 0.0208	M1: for $\frac{(0.5 \pm 0)^{2}}{12}$ or for $\int_{0}^{0.5} 2 x^{2} \mathrm{~d} x-(\text { their }(b))^{2}$ with some integration $x^{n} \rightarrow x^{n+1}$	M1A1
		A1: $\frac{1}{48}$ or awrt 0.0208 or awrt 2.08×10^{-2}	

(d)	$\mathrm{P}(L>0.4)=0.2$	$\mathrm{P}(L<0.4)=0.8$	An awrt 0.123 award B1 M1 A1	$\begin{aligned} & \text { B1 } \\ & \text { dM1A1 } \end{aligned}$
	$Y \sim \mathrm{~B}(30,0.2)$	$Y \sim \mathrm{~B}(30,0.8)$	B1: using or writing $\mathrm{B}(30$, their $\mathrm{P}(L<0.4)$ or $\mathrm{B}(30$, their $\mathrm{P}(L>0.4)$. If they have not written these probabilities in this part use answer from part (a) ie $\mathrm{P}(L<$ 0.4) = (a) or $\mathrm{P}(L>0.4)=1-(\mathrm{a})$	
	$\mathrm{P}(Y \leq 3)=0.1227$	$\mathrm{P}(Y \geq 4)=0.1227$	M1: dependent on previous B mark being awarded. Using $\mathrm{B}(30, \mathrm{P}(L>0.4)$ with $\mathrm{P}(Y \leq 3)$ written or used Or $\mathrm{B}(30 \mathrm{P}(L<0.4))$ with $\mathrm{P}(Y \geq 4)$ written or used A1: awrt 0.123	

		M1: Using 1- $\mathrm{F}(0.4)$ or $\mathrm{F}(0.5)-\mathrm{F}(0.4)$ or $\mathrm{P}(X \leq 0.5)-\mathrm{P}(X \leq 0.4)$. Must see some substitution of 0.4 $\mathrm{~A} 1: \frac{1}{25}$ or 0.04 only	M1A1

(f)	Po(4)	B1ft: using or writing Po(4) NB for ft they must either write $100 \times$ "their 0.04 " and use Poison or write Po("their λ ") Allow P instead of Po	B1ft
	$\mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7)$	M1 using or writing 1- $\mathrm{P}(X \leq 7)$ If using normal approximation, they must either write this or $\frac{7.5-4}{2}$ or $\frac{7.5-4}{\sqrt{3.84}}$ or $\frac{7.5-4}{\text { awrt } 1.96}$ or $\frac{7.5-20}{\sqrt{16}}$	M1
	$\begin{aligned} & =1-0.9489 \\ & =0.0511 \end{aligned}$	A1 awrt 0.0511	A1

Question Number	Scheme		Marks
		Notes	
5(a)	$\begin{array}{ll} X \sim \operatorname{Po}(4) & \\ \mathrm{P}(X=0)=0.0183 & \mathrm{P}(X \geq 8)=0.0511 \\ \mathrm{P}(X \leq 1)=0.0916 & \mathrm{P}(X \geq 9)=0.0214 \end{array}$	M1: using Po(4), need to see a probability from $\mathrm{Po}(4)$, need not be one of the 4 given here. May be implied by a single correct CR	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
	$\begin{array}{r} \text { CR } \begin{array}{r} X \\ =0 \\ X \end{array} \quad 9 . \end{array}$	A1: $X=0$ or $X \leq 0$ or $X<1$ A1: $X \geq 9$ or $X>8$ Any letter(s) may be used instead of X eg CR or Y or in words SC candidates who write $\mathrm{P}(X=0)$ and $\mathrm{P}(X \geq 9)$ award M1A1 A0 NB Candidates who write $8<x \leq 0$ oe get M1A0A0	
(b)	$\mathrm{H}_{0}: \lambda=4 \quad \mathrm{H}_{1}: \lambda \neq 4$	B1: both hypotheses correct, labelled H_{0} or NH or H_{n} and H_{1} or AH or H_{a} may use λ or μ. These must be seen in part (b)	B1B1ft
	There is evidence that Liftsforall's claim is true or There is insufficient evidence to doubt Liftforall's claim	B1: ft their CR only, Do not ft hypotheses.Needs to include the word Liftsforall. If no Critical region stated in part (a) award B0 or $\mathrm{P}(X \leq 3)=$ awrt 0.434 and a correct conclusion.	
(c)	$0.0183+0.0214=0.0397$	B1: Awrt 0.0397	B1
(d)	$\mathrm{P}(B \leq 3 \mid B \sim \mathrm{Po}(6))=0.1512$	M1: using $\operatorname{Po}(6)$ and writing or using $\mathrm{P}(B \leq 3)$ oe. A1: awrt 0.151	M1 A1
	$X \sim \mathrm{~B}(4,0.1512)$	B1ft: dep on M1 being awarded. Using or writing $\mathrm{B}(4$,"their 0.151 ") for use they need $(1-p)^{4}$ or $p(1-p)^{3}$ or $p^{2}(1-p)^{2}$	dB1ft
	Alternative method for first 3 marks ${ }^{\text {a }}$		
	$\mathrm{P}(B \geq 4 \mid B \sim \operatorname{Po}(6))=0.8488$	M1: using $\operatorname{Po}(6)$ and writing or using $\mathrm{P}(B \geq 4)$ oe A1: awrt 0.849	M1 A1
	$Y \sim \mathrm{~B}(4,0.849)$	B1ft: dep on M1 being awarded. Using or writing B (4,"their 0.849 ") for use they need $(p)^{4}$ or $p^{3}(1-p)$ or $p^{2}(1-p)^{2}$	dB1ft
	If $0<p<0.5$		
	$\mathrm{P}(X \leq 1)=\mathrm{P}(X=0)+\mathrm{P}(X=1)$	M1: using or writing $\mathrm{P}(X=0)+\mathrm{P}(X=1) \text { oe }$	M1
	$(1-0.1512)^{4}+4 \times(1-0.1512)^{3} \times 0.1512$	M1: $(1-p)^{4}+4 \times(1-p)^{3} \times p$ oe	dM1
	$=0.889$	A1: awrt 0.889	A1
	If $0.5<p<1$		
	$\mathrm{P}(Y \geq 3)=\mathrm{P}(Y=3)+\mathrm{P}(Y=4)$	M1: using or writing $\mathrm{P}(X=3)+\mathrm{P}(X=4)$ oe	M1
	$4 \times(0.8488)^{3} \times 0.1512+(0.8488)^{4}$	M1: $(p)^{4}+4 \times(p)^{3} \times(1-p)$ oe	dM1
	$=0.889$	A1: awrt 0.889	A1

NB: a correct answer implies full marks, lose the final A mark if got awrt 0.889 and go on to do more work

Question Number	Scheme	Marks	
	NB: All powers of 1 must be simplified for the Accuracy(A) marks	notes	
$\mathbf{6 (a)}$	$\left[\frac{k x^{n+1}}{n+1}\right]_{0}^{1}=1$	M1: attempting to integrate $x^{n} \rightarrow x^{n+1}$ and putting equal to 1, ignore limits A1: correct integration	M1A1
	$k=n+1$	A1: $k=n+1$ Do not accept $\frac{n+1}{1^{n+1}}$	A1

(b)

$$
\int_{0}^{1} k x^{n+1} \mathrm{~d} x=\left[\frac{k x^{n+2}}{n+2}\right]_{0}^{1}
$$

M1: Writing or using $\int_{0}^{1} k x^{n+1} \mathrm{~d} x$, ignore limits. Allow $\int_{0}^{1} k x(x)^{n} \mathrm{~d} x$
Allow substitution of their k
A1: correct integration $\frac{k x^{n+2}}{n+2}$

$$
=\frac{n+1}{n+2}
$$

A1: correct answer only- must be in terms or n
(c)

M1: Attempting to integrate	
$\int_{0}^{1} k x^{n+2} \mathrm{~d} x, x^{n+2} \rightarrow x^{n+3}$, ignore	
limits. Do not allow substitution of k if it has x in it. This must be on its own with no extra bits added on.	M1
A1: correct answer only SC if they have $\frac{k}{n+2}$ as answer to	A1cao
$\operatorname{part}(\mathrm{b})$ award A1 for $\frac{k}{n+3}$	

(d)	$\operatorname{Var}(X)=\frac{3}{5}-\left(\frac{3}{4}\right)^{2}=\frac{3}{80}$	M1: using "their(c)" - ""their(b)"] ${ }^{2}$ with $n=2$ or correct $\operatorname{Var}(X)$ Using $\int_{0}^{1} k x^{4} \mathrm{~d} x-\left[\int_{0}^{1} k x^{3} \mathrm{~d} x\right]^{2}$ for $\operatorname{Var}(X)$	M1
	$\operatorname{Var}(3 X)=9 \operatorname{Var}(X)$	M1: for writing or using $9 \operatorname{Var}(X)$ or $3^{2} \operatorname{Var}(X)$	M1 A1cso
	$=\frac{27}{80}$ oe or 0.3375 or 0.338	A1: cso	

Question Number	Scheme	Marks

7

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

